Kronecker coefficients: the tensor square conjecture and unimodality
نویسندگان
چکیده
We consider two aspects of Kronecker coefficients in the directions of representation theory and combinatorics. We consider a conjecture of Jan Saxl stating that the tensor square of the Sn-irreducible representation indexed by the staircase partition contains every irreducible representation of Sn. We present a sufficient condition allowing to determine whether an irreducible representation is a constituent of a tensor square and using this result together with some analytic statements on partitions we prove Saxl conjecture for several partition classes. We also use Kronecker coefficients to give a new proof and a generalization of the unimodality of Gaussian (q-binomial) coefficients as polynomials in q, and extend this to strict unimodality. Résumé. Nous considérons deux aspects des coéfficients de Kronecker dans le domaine de la Théorie des Représentations et le domaine Combinatoire. Nous considérons la conjecture suivante de Jan Saxl: le tenseur au carré de la représentation irréductible du groupe Sn indexée par la partition (k, k− 1, ..., 1) contient toutes les représentations irréductibles du groupe Sn (n = ( k+1 2 ) ). Nous présentons une condition suffisante qui permet de déterminer si une représentation irréductible est une constituante d’un tenseur au carré. En utilisant ce résultat avec des résultats analytiques sur les partitions, nous prouvons la conjecture de Saxl pour plusieurs classes de partitions. Nous utilisons aussi les coéfficients de Kronecker pour donner une nouvelle preuve et une généralisation de l’unimodalité des coéfficients de Gauss (q-binomiaux) comme polynômes en q et nous étendons cela à l’unimodalité stricte.
منابع مشابه
Kronecker Products, Characters, Partitions, and the Tensor Square Conjectures
We study the remarkable Saxl conjecture which states that tensor squares of certain irreducible representations of the symmetric groups Sn contain all irreducibles as their constituents. Our main result is that they contain representations corresponding to hooks and two row Young diagrams. For that, we develop a new sufficient condition for the positivity of Kronecker coefficients in terms of c...
متن کاملBounds on certain classes of Kronecker and q-binomial coefficients
We present a lower bound on the Kronecker coefficients for tensor squares of the symmetric group via the characters of Sn, which we apply to obtain various explicit estimates. Notably, we extend Sylvester’s unimodality of q-binomial coefficients ( n k ) q as polynomials in q to derive sharp bounds on the differences of their consecutive coefficients. We then derive effective asymptotic lower bo...
متن کاملUnimodality via Kronecker Products
We present new proofs and generalizations of unimodality of the q-binomial coefficients ( n k ) q as polynomials in q. We use an algebraic approach by interpreting the differences between numbers of certain partitions as Kronecker coefficients of representations of Sn. Other applications of this approach include strict unimodality of the diagonal q-binomial coefficients and unimodality of certa...
متن کاملSTRICT UNIMODALITY OF q-BINOMIAL COEFFICIENTS
We prove strict unimodality of the q-binomial coefficients ( n k ) q as polynomials in q. The proof is based on the combinatorics of certain Young tableaux and the semigroup property of Kronecker coefficients of Sn representations. Résumé. Nous prouvons l’unimodalité stricte des coefficients q-binomiaux ( n k ) q comme des polynômes en q. La preuve est basée sur la combinatoire de certains Tabl...
متن کاملBOUNDS ON KRONECKER AND q-BINOMIAL COEFFICIENTS
We present a lower bound on the Kronecker coefficients of the symmetric group via the characters of Sn, which we apply to obtain various explicit estimates. Notably, we extend Sylvester’s unimodality of q-binomial coefficients ( n k ) q as polynomials in q to derive sharp bounds on the differences of their consecutive coefficients.
متن کامل